兩支香同時(shí)點(diǎn)燃,一支只在一端點(diǎn)燃,另一支則兩端同時(shí)點(diǎn)燃,當(dāng)兩端點(diǎn)燃的香完全燒盡時(shí),將剩余的那支香的兩端也同時(shí)點(diǎn)燃,從這一刻起,直到剩余的香也完全燒完,這段時(shí)間總共是15分鐘,在這一過程中,有一位經(jīng)理?yè)碛腥慌畠?,她們的年齡分別是2歲、2歲和9歲;而經(jīng)理本人的年齡是32歲。
題目中的案例涉及李明和王英兩位人物,李明8歲,王英20歲,已知王英5年前的年齡等于李明7年后的年齡,這表明他們之間的年齡差是12歲,以下是關(guān)于智力題的簡(jiǎn)要介紹:智力題是一種綜合性的能力測(cè)試,它可以通過各種形式來(lái)考察答題者的注意力、觀察力、邏輯思維、想象力和記憶力,這類題目通常兼具合理性、知識(shí)性和娛樂性,形式多樣。
在一場(chǎng)體育活動(dòng)中,甲、乙兩位學(xué)生分別以不同的速度跑完全程,甲在前半程以4千米/小時(shí)的速度前進(jìn),后半程則以5千米/小時(shí)的速度奔跑;乙則在前半程以4千米/小時(shí)的速度跑,后半程以5千米/小時(shí)的速度跑,我們需要確定哪位學(xué)生先到達(dá)終點(diǎn)。
在一個(gè)五年級(jí)的班級(jí)中,每個(gè)班有兩位班長(zhǎng),在第一次會(huì)議上,A、B、C、D四位同學(xué)參加了會(huì)議;第二次會(huì)議時(shí),E、B、F、D四位同學(xué)出席;第三次會(huì)議則由A、E、B、G四位同學(xué)參加;而H同學(xué)從未參加過任何一次會(huì)議,我們需要推斷出每個(gè)班的班長(zhǎng)是誰(shuí)。
1. 解答思路:853的解法是,8減去5等于3,5乘以3等于15,合并起來(lái)就是315;769的解法是,7減去6等于1,6乘以9等于54,合并起來(lái)就是154;325的解法是,3減去2等于1,2乘以5等于10,合并起來(lái)就是110,按照這個(gè)規(guī)律,837的解法應(yīng)該是:8減去3等于5,3乘以7等于21,所以答案是521,解題的關(guān)鍵在于找到其中的規(guī)律。
2. 解答步驟:答案是521,規(guī)則是,第一位數(shù)是前兩位數(shù)相減得到,后兩位數(shù)是第二位數(shù)與第三位數(shù)相乘得到,853的解法是8減去5等于3,5乘以3等于15,所以837的解法是8減去3等于5,3乘以7等于21。
3. 【答案】:解題的規(guī)律是,第一個(gè)數(shù)減去第二個(gè)數(shù)得到結(jié)果的首位數(shù),第二個(gè)數(shù)乘以第三個(gè)數(shù)得到結(jié)果的后兩位數(shù)。
4. 在一個(gè)密室逃脫游戲中,笑笑遇到了一個(gè)必須答對(duì)謎題才能離開的房間。
5. 根據(jù)上述規(guī)律,3 (8-5=3, 5*3=15) = 315, 769 (7-6=1, 6*9=54) = 154, 325 (3-2=1, 2*5=10) = 110, 837 (8-3=5, 3*7=21) = 521,答案是521。
【答案】:將48個(gè)果凍分成四份,每份的果凍數(shù)量分別是12、6、27和3,假設(shè)每份果凍的數(shù)量都是X,那么第一份果凍的數(shù)量是X加上3,第二份是X的三倍,第三份是3乘以X,第四份是X除以3,這四份果凍的總和是48,通過求解方程可以得出X=9,這樣就可以知道每一份果凍的具體數(shù)量了。
答案:丙在說(shuō)謊,甲和丙都拿了一部分果凍,假設(shè)甲在說(shuō)謊,那么乙也在說(shuō)謊,這與題意不符;假設(shè)乙在說(shuō)謊,那么甲也在說(shuō)謊,這同樣與題意不符,說(shuō)謊的人是丙,只有甲和丙都拿了一部分果凍,才符合題意。
在一場(chǎng)跳躍比賽中,狐貍每次跳躍5米,而黃鼠狼每次跳躍75米,它們每秒鐘只能跳躍一次,比賽過程中,從起點(diǎn)開始,每隔12又3/8米就設(shè)有一個(gè)陷阱。
一位經(jīng)理有三個(gè)女兒,她們的年齡總和為13歲,年齡乘積等于經(jīng)理的年齡,即32歲,一個(gè)下屬已經(jīng)知道經(jīng)理的年齡,但無(wú)法確定三個(gè)女兒的年齡,經(jīng)理提到只有一個(gè)女兒的頭發(fā)是黑色的,下屬隨后就能確定三個(gè)女兒的年齡。
上一篇
智慧同義詞探析
下一篇
曲譜中fp的含義是什么?